Species Delimitation with Gene Flow.
نویسندگان
چکیده
Species are commonly thought to be evolutionarily independent in a way that populations within a species are not. In recent years, studies that seek to identify evolutionarily independent lineages (i.e., to delimit species) using genetic data have typically adopted multispecies coalescent approaches that assume that evolutionary independence is formed by the differential sorting of ancestral alleles due to genetic drift. However, gene flow appears to be common among populations and nascent species, and while this process may inhibit lineage divergence (and thus independence), it is usually not explicitly considered when delimiting species. In this article, we apply Phylogeographic Inference using Approximate Likelihoods (PHRAPL), a recently described method for phylogeographic model selection, to species delimitation. We describe an approach to delimiting species using PHRAPL that attempts to account for both genetic drift and gene flow, and we compare the method's performance to that of a popular delimitation approach (BPP) using both simulated and empirical datasets. PHRAPL generally infers the correct demographic-delimitation model when the generating model includes gene flow between taxa, given a sufficient amount of data. When the generating model includes only isolation in the recent past, PHRAPL will in some cases fail to differentiate between gene flow and divergence, leading to model misspecification. Nevertheless, the explicit consideration of gene flow by PHRAPL is an important complement to existing delimitation approaches, particularly in systems where gene flow is likely important. [approximate likelihoods; coalescent simulations; genealogical divergence index; Homo sapiens; isolation-with-migration; multispecies coalescent; Sarracenia; Scincella.].
منابع مشابه
Gene flow and species delimitation.
A defining feature of species is that their constituting populations are connected by gene flow. However, interspecific gene flow (introgression) can affect species integrity. If some genome components were less prone to introgression than others, they should be particularly suitable to delimitate species. Recent simulation studies have predicted a negative correlation between intra- and inters...
متن کاملSpecies delimitation with ABC and other coalescent-based methods: a test of accuracy with simulations and an empirical example with lizards of the Liolaemus darwinii complex (Squamata: Liolaemidae).
Species delimitation is a major research focus in evolutionary biology because accurate species boundaries are a prerequisite for the study of speciation. New species delimitation methods (SDMs) can accommodate nonmonophyletic species and gene tree discordance as a result of incomplete lineage sorting via the coalescent model, but do not explicitly accommodate gene flow after divergence. Approx...
متن کاملConsidering gene flow when using coalescent methods to delimit lineages of North American pitvipers of the genus Agkistrodon
Examining species diversity and mechanisms of speciation using coalescent models provides a framework for how regional diversity is accrued, even in well-studied areas such as the Nearctic. It is likely, that gene flow among closely-related species with adjacent distributions may be common. However, the absence of gene flow is a primary assumption of many phylogeographical methods that produce ...
متن کاملSpeciation at the Mogollon Rim in the Arizona Mountain Kingsnake (Lampropeltis pyromelana).
Studies of speciation and taxon delimitation are usually decoupled. Combining these methods provides a stronger theoretical ground for recognizing new taxa and understanding processes of speciation. Using coalescent methods, we examine speciation, post-speciation population demographics, and taxon delimitation in the Arizona Mountain Kingsnake (Lampropeltis pyromelana), a species restricted to ...
متن کاملSpeciation history of a species complex of Primulina eburnea (Gesneriaceae) from limestone karsts of southern China, a biodiversity hot spot
Limestone karsts in southern China are characterized by high edaphic and topographic heterogeneity and host high levels of species richness and endemism. However, the evolutionary mechanisms for generating such biodiversity remain poorly understood. Here, we performed species delimitation, population genetic analyses, simulations of gene flow and analyses of floral morphological traits to infer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Systematic biology
دوره 66 5 شماره
صفحات -
تاریخ انتشار 2017